Technical Analysis Report: Aluminum 350cfm Carburetor

Comparison: Aluminum 350cfm vs. Unaltered Hollev 350cfm

Reference: Stock Gauge Specifications Designed for Holley 350cfm Carburetors

Regulatory Non-Compliance

Per Race of Champions rules, any new components—including engine, frame, or body parts—must be submitted for official approval prior to use in competition. This requirement was **not followed**. The aluminum carburetor in question was **never presented for preapproval** before its use in competition, which constitutes a direct violation of the rules.

Summary of Technical Deviations

1. Non-Stock Material Composition

The component was constructed using **aluminum and other alloys**, deviating from the materials specified for a stock, unaltered Holley 350cfm carburetor.

2. Altered Booster Location

The booster location was **modified** and did not conform to the required **stock**, **unaltered positioning** as defined by the technical specifications.

3. Throttle Plate Modifications

The **shape and size** of the throttle blades were altered, differing from those of a stock unaltered unit.

4. Weight Discrepancy

- The weight of the stock Holley 350cfm carburetor is approximately 33 grams.
- o The aluminum version weighed only **19 grams**, a substantial reduction that may affect mechanical behavior during operation.

5. Venturi Wall Modifications

 Material scanning and thickness analysis revealed that the venturi walls were altered in both dimension and construction when compared to the stock specification.

Thermal and Performance Considerations

Material Behavior:

Aluminum exhibits different thermal properties compared to standard stock materials. It dissipates heat more rapidly and cools more efficiently, which can directly influence fuel atomization and air/fuel mixture temperature.

Heat Capacity & Charge Density:

With its **lower heat capacity**, aluminum components tend to remain cooler. In a naturally aspirated engine, this can **increase charge density**, improving combustion efficiency and resulting in **higher power output**, despite potential decreases in fuel efficiency.

• Thermal Expansion:

Aluminum expands more significantly with temperature increase—a factor known as **thermal expansion**. Combined with the reduced wall thickness, this can alter airflow characteristics during operation, potentially giving a **competitive advantage**.

Conclusion & Recommendation

The aluminum 350cfm carburetor used in competition:

- Was not submitted for mandatory pre-approval.
- Featured non-conforming materials, altered geometry, and modified internal structures.
- Would have not been approved for competition had it undergone proper inspection prior to use.

Recommendation:

The use of this component clearly violates Race of Champions technical regulations. It is recommended that **penalties be applied** as appropriate per the rulebook.